Multimedia
- Tutte le date
- Ultimi 12 mesi
- Ultimi 6 mesi
- Ultimi 3 mesi
Ascolta l’intervista ad Alberto Steindler, presidente Fondazione ITS per le Nuove Tecnologie della Vita A.Volta insediata in Area Science Park a Trieste.
Scopri i percorsi specialistici post diploma che formano Tecnici Superiori in aree ritenute strategiche per lo sviluppo economico e la competitività nazionali, in particolare:
- TECNICO APPARECCHIATURE BIOMEDICHE
- TECNICO INFORMATICA BIOMEDICA
- DATA NETWORK SPECIALIST
Maggiori info: https://www.itsvolta.it/
Ascolta l’intervista a Stefano Chiellini, direttore Fondazione VITA Istituto Tecnico Superiore per le Nuove Tecnologie della Vita, Siena.
La Fondazione VITA è un Istituto Tecnico Superiore (ITS) nato in Toscana per rispondere alla domanda di nuove ed elevate competenze tecniche e tecnologiche da parte delle imprese. Costituisce un importante segmento di formazione terziaria in alternativa a quella universitaria.
Maggiori info: https://itsvita.it/
Ascolta l’intervista a Gian Luca Bianchi, coordinatore della struttura stabile Laboratorio di Fitopatologia e Biotecnologie dell’Agenzia Regionale per lo Sviluppo Rurale del Friuli Venezia Giulia (ERSA) e scopri il suo lavoro nel campo della salute delle piante.
Ascolta l’intervista a Selena Tomada, specialista tecnico dell’Agenzia Regionale per lo Sviluppo Rurale del Friuli Venezia Giulia (ERSA) e scopri il suo lavoro nel campo della salute delle piante.
Ascolta l’intervista a Marco Francese, biologo e ecotossicologo, responsabile del laboratorio di Ricerca e Sviluppo della cooperativa Shoreline, e scopri il suo lavoro nel mondo dell’ecologia e della tutela ambientale.
Come riusciremo ad avere energia sufficiente a coprire fabbisogni sempre crescenti? Come contrasteremo il riscaldamento globale? Come preserveremo la biodiversità? Come potremo assicurare acqua potabile per tutti? Come fronteggeremo i nuovi virus?
Il progetto Science For Life sviluppato da Area Science Park e Toscana Life Sciences nasce per promuovere la cultura scientifica, in particolare per favorire l’orientamento dei giovani verso le discipline STEM (science, technology, engineering and mathematics).
La serie introduce le giovani generazioni alle professioni nel settore delle scienze della vita e ai lavori del futuro connessi. L’intento è ispirare e motivare alla cultura scientifica, scoprendo in modo divertente e dinamico alcune delle aree principali di questo settore legate alla salute dell’uomo e del pianeta.
Biologi, fisici, chimici, medici e ingegneri guidano l’audience dentro e fuori i laboratori, connettendo le innovazioni nel campo delle scienze della vita all’impatto che esse possono avere sulla società e sul nostro futuro.
Scopri le loro ricerche e gli obiettivi scientifici e immergiti in professioni ricche di conoscenza e fascino.
Progetto realizzato con il contributo del Ministero dell’Università e delle Ricerca.
Data are the main underlying substrate of the research process. It is imperative to facilitate the collection, creation, analysis, and discussion of data to generate new knowledge and improve research.
FAIR, an acronym for Findable, Accurate, Interoperable and Reusable indicates the main features that a data ecosystem must possess to achieve this objective.
Therefore, to create a digital platform based on FAIR principles on a multicentric and heterogenous consortium of laboratories it is crucial to analyze the research process of every member to identify the differences and, more importantly, the similarities between them, creating a shared and useful data management plan that homogenize and streamline the data collection and sharing process.
To assess these processes an interview was carried out within the researchers of Pathogen Readiness Platform (PRP@CERIC) project. Three main steps were identified that are shared with all the laboratories: 1) the sample acquisition/creation entry phase, 2) the sample analysis and data elaboration phase, and 3) the research results and data sharing phase.
The FAIRification activity intervene on these steps through a combination of methodologies and digital infrastructure software: 1) the adoption and testing of forms and metadata acceptance repositories. 2) The introduction of a shared electronic notebook (adapting the opensource ELABFTW software), integrated with automatic analysis pipelines and laboratory specific data management plans. 3) The customization of an opensource platform (NOMAD OASIS) that supports direct connection with the journal publications, external databases and uses persistent and globally unique identifiers, (i.e., Digital Object Identifiers, DOI) to maintain a direct link to the real data on the platform. This approach aims at shifting the burden of implementing a FAIR data ecosystem towards automatic processes that follow the natural internal research process. It will use real cases from the different labs to test the implementation and usability.
Speaker: Marco Prenassi, RIT (Area Science Park)
Infrared nanoscopies, such as IR s-SNOM (scattering-type scanning near-field microscopy) and PTE (photo-thermal expansion microscopy), allow to overcross the diffraction limit imposed to far-field FTIR by exploiting the near-field approach.
This is done by combining the high chemical sensitivity of infrared spectroscopy in the mid-IR range with the nanoscale lateral resolution of Atomic Force Microscopy (AFM).
Structural information on fundamental biological components, including proteins, nucleic acids, and lipids, can be thus obtained together with topographic details with lateral resolution of a few tens of nanometers.
IR s-SNOM, in particular, is the ideal technique for characterizing cellular sub-components and bio-based nanocomposites with thicknesses down to a few nanometers.
Examples include protein self-assemblies, amyloid-like structures, DNA-based adducts for gene transfer, and drug delivery systems.
This seminar will cover the fundamentals of IR nanoscopy, with a focus on selected practical applications.
Speaker: Federica Piccirilli, RIT (Area Science Park)
RNA modifications have attracted increasing attention due to their crucial roles in various biological processes. These modifications involve biochemical alterations of nucleotides that can impact RNA structure and dynamics.
Despite extensive studies, the use of molecular dynamics (MD) simulations to investigate modified RNA remains limited.
MD simulations are a powerful tool for accessing the structural dynamics of RNA at the atomistic level. The accuracy of these simulations largely depends on the quality of the force-field parameters utilized.
Therefore, it is beneficial to combine simulations with experiments, such as by fitting parameters against experimental data or enforcing experimental averages with ensemble refinement methods.
In this talk the use of ensemble refinement methods are presented, to investigate the structure of a 20-bp RNA helix containing Inosines. The maximum entropy principle, along with advanced enhanced sampling techniques, was used to generate an ensemble of structures compatible with NMR and SAXS data.
The presence of Inosines increased flexibility in the helix and allowed for the observation of sugar puckering in the C2′-endo conformation, which is not expected in ds-RNA.
Speaker: Valerio Piomponi, RIT (Area Science Park)
Biomedical research relies heavily on purified recombinant proteins, playing a crucial role in a wide spectrum of applications.
Their homogeneous nature allows for detailed reconstruction of their three-dimensional structures using techniques such as X-ray, cryoEM, and NMR, facilitating a deeper understanding of protein folding, conformational changes, molecular architectures, enabling studies of their function.
Additionally, these proteins are essential in investigating various interactions, such as protein-protein, protein-ligand, or protein-nucleic acid, and serve as critical tools in the field of therapeutics and diagnostics.
To guarantee the reliability of experimental data in these studies a good quality of recombinant protein is essential.
In this presentation the process of protein production is described, giving an overview of critical steps from construct design through expression, purification and quality control.
Speaker: Marta Semrau, RIT (Area Science Park)
Nasce una nuova residenza artistica in Area Science Park grazie alla collaborazione con MEET Digital Culture Center!
Nelle settimane scorse Area ha ospitato Studio Above&Below, il duo di artisti inglesi vincitore della sesta challenge di MEET all’interno del progetto “S+T+ARTS in the City”, promosso nel contesto del programma europeo STARTS.
Il progetto Regenerative Symphony si concentra sui materiali critici, sui diversi sistemi di intelligenza artificiale e sul riciclaggio dei rifiuti elettronici.
Dopo l’ideazione della challenge e della selezione dello Studio da parte di MEET, Area Science Park ha il compito di fornire ispirazione agli artisti attraverso l’accesso a risorse, piattaforme e dati aperti e al confronto con i nostri ricercatori, in particolare dei laboratori LADE e LAME, sul tema delle scienze dei materiali, dei dati e della vita.
Ne abbiamo parlato con Daria Jelonek e Perry-James Sugden, dello Studio Above&Below.
Structural Biology is a consolidated scientific field that is critical for understanding of the molecular bases that lie behind the function of the different proteins, the investigation on the pathological impact of protein mutations and the development of new and better drugs.
One of the most long-standing disciplines of the field is protein crystallography, a technique that exploits single crystal x-ray diffraction to obtain atomic or near-atomic resolution models of the proteins that are investigated, allowing to delve into structure-activity relationship studies with final aims that may span from understanding the functioning of a biological process at molecular level, to the development of new therapeutic agents.
In the first part of the presentation some base concepts regarding protein crystallization are described, with a particular focus on how protein crystals can be optimized and on the techniques that may be used in order to obtain crystals, and then structures, of protein-ligand complexes.
In the second part a portion of a Structure Based Drug Design project is illustrated, providing an example of the data and results that can be obtained using single crystal x-ray diffraction, also focusing on the different approaches that might be used for the development of a drug candidate.
Speaker: Andrea Dalle Vedove, RIT (Area Science Park)